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Abstract – In this letter, we propose an expression for the instantaneous acoustic radiation force
acting on a compressible sphere when it is immersed in a sound field with a wavelength much
larger than the particle size (Rayleigh scattering regime). By following a Lagrangian approach,
we show that the leading term of the radiation force can alternatively be expressed as a fluctuating
gravitation-like force. In other words, the effect of the acoustic pressure gradient is to generate a
local acceleration field encompassing the sphere, which gives rise to an apparent buoyancy force,
making the object move in the incoming field. When averaging over time, we recover the celebrated
Gor’kov expression and emphasize that two terms appear, one local and one convective, which
identify with the well-known monopolar and dipolar contributions.

Copyright c© EPLA, 2019

Since Rayleigh’s pioneering work on sound waves [1], later
followed by Langevin and Brillouin, among others [2–4],
it is known that like its electromagnetic cousin, acoustic
waves can transfer linear momentum to a particle, even
in a perfect fluid, referred to as the radiation or pressure
force, with its associated tension or radiation stress ten-
sor [4]. One might wonder how an elemental sound wave,
with its harmonic pressure-velocity oscillations (in time
and space), could exert a non-zero average force. Like with
electromagnetic waves, the answer lies in the second-order
effect arising for sound waves when the particle pulsates
in volume while moving back and forth in the acoustic
oscillating flow, yielding a small hysteretic displacement.
These incremental displacements accumulate over millions
of cycles per second (at the sound frequency), and may
be interpreted as the result of an average or macroscopic
force on the particle. The average force was first cal-
culated by King for a hard sphere in a perfect fluid [5],
and generalized by Yosioka [6] for compressible objects. It
generated a complete and active field of research with in-
creasingly heavy mathematics addressing complex objects,
wave fields, and more realistic effects [7,8]. In the mean-
time, impressive applications of the radiation force to mi-
crofluidics have been published in the last ten years. This
has given rise to the new discipline of acoustofluidics [9],

in which the ability of standing waves to arrange, trap and
sort particles or living cells has been demonstrated both
in propagative [10] and evanescent fields [11].

However, despite great theoretical and experimental re-
sults, very few papers address the question of the short-
time dynamics of a particle in a sound field, when pushed
upon by the radiation force.

As is often the case for non-stationary problems [12],
the use of a Lagrangian approach brings a new viewpoint
on the issue. For instance, in fully developed turbulence,
this renewed viewpoint brought important breakthroughs
in this long-history issue [13,14]. This is the issue moti-
vating the present work on the radiation force. Here, in
order to gain insight into the physics at play, we will fo-
cus on the instantaneous dynamics of the particle when
tracked in the oscillating sound flow. By leaning on the
celebrated Gor’kov expression of the radiation force [15],
we will show that the radiation force can also be inter-
preted as the average of a fluctuating buoyant force asso-
ciated with an effective gravitational field, shedding new
light on its physical origin.

As our paper is based on the Gor’kov formulation,
we start by analyzing the implicit assumptions and the
applicability of the Gor’kov formulation in the context
of a free-to-move (not suspended) particle. It is to our
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knowledge an issue which has not been discussed in detail
in the literature so far although it is mostly employed in
this context.

Let us consider a compressible particle of varying outer
surface Sp(t) immersed in a inviscid and infinite compress-
ible fluid, in the absence of gravity. The whole system
is excited by a time-harmonic acoustic wave of frequency
f = 1/T characterized by its incident Eulerian velocity,
pressure and density fields, respectively (vin, pin, ̺in).
The acoustic wavelength λf in the fluid is supposed to be
much larger than the sphere radius a (Rayleigh regime):
a ≪ λf . Let us choose a much larger surface S in the
far-field region. V (t) is the control volume V delimited
externally by S and internally by Sp(t).

In an inviscid fluid, only pressure forces can apply so
that a particle at position r = rp(t) at time t is submitted
to the instantaneous (radiation) force:

F(rp(t)) =

∫

Sp(t)

pdS, (1)

where p is the total pressure field (incident and scattered),
and the surface element dS is oriented towards the parti-
cle. In general, the instantaneous force F(t) is not known,
only its averaged value F̄rad(r), defined as the averaged
radiation force:

F̄rad(r) = 〈F(rp(t))〉, (2)

where 〈.〉 is the time-average operator over the time T .
In the general case, the momentum change rate of the

fluid volume V can be written as

d

dt

∫

V (t)

̺vdV = −

∫

S

Π · dS −

∫

Sp(t)

pdS, (3)

where Π is the total momentum density flux tensor defined
as Πij = pδij + ̺vivj . Averaging eq. (3) over time gives:

F̄rad = −

〈

d

dt

∫

V (t)

̺vdV

〉

−

∫

S

〈Π〉 · dS (4)

= −

∫

S

〈Π〉 · dS −
P (T ) − P (0)

T
, (5)

with

P (t) =

∫

V (t)

(̺v)(t)dV. (6)

In order to simplify the problem, let us first assume that
the movement of the particle mass center in the sound flow
is perfectly periodic in space and time so that the particle
mean displacement is exactly zero. This can be achieved
by means of an additional external and time independent
force, hereafter denoted F

∗. Hence, we have:

F
∗ +

∫

Sp(t)

pndS = mpΓ(t), (7)

with Γ and mp the particle acceleration and mass,
respectively.

By averaging over time, it is clear that the force F
∗

must exactly compensate the mean radiation force F̄rad =
〈
∫

Sp
pndS〉 to ensure a zero-mean displacement (or accel-

eration). Thanks to the additional force, the movement is
perfectly periodic in time, so that the term 〈 d

dt

∫

V (t)
̺vdV 〉

cancels. With this assumption of a suspended particle, we
recover the expression for the radiation force as used by
Gor’kov (first equation of [15]), also in agreement with the
assumption of perfect stationarity in the more detailed pa-
per of Settnes and Bruus (see eqs. A1a to A1f of ref. [16]).
In this framework, and assuming a small acoustic Mach
number ε = vin

cf0

(with cf0
the celerity of sound in the

fluid), Gor’kov has used an asymptotic approach to cal-
culate the term 〈Π〉. Introducing an exponent α in order
to express the particle size to wavelength ratio as a func-
tion of the Mach number as done in [17], and recognizing
that the leading term in 〈Π〉 only depends on the particle
monopolar and dipolar contributions, Gor’kov has shown
that for a standing incident field the leading term of F̄rad

is ρc2a2O(ε2+α) and derives from the acoustic potential
U(r) so that

F̄rad ≃ −

∫

S

〈Π〉 · dS = −∇U(r), (8)

with U(r) = Vp0

(

f1

2
κf0〈p

2
in〉 −

3f2

4
̺f0〈v

2
in〉

)

(9)

and f1 = 1 − κ̃, and f2 =
2(˜̺− 1)

2˜̺+ 1
, (10)

κ̃ =
κp0

κf0

and ˜̺ =
̺p0

̺f0

being, respectively, the equilibrium

compressibility and density ratios of the particle over the
fluid, while Vp0 is the particle rest volume.

Now, in the more general case of a free particle (i.e.,
when F

∗ = 0) the particle movement is no longer ex-
actly time-periodic so that a tiny incremental displace-
ment δ(t) is added at every sound cycle. Consequently,
the fluid momentum is no longer periodic and the momen-
tum term 〈 d

dt

∫

V (t) ̺vdV 〉 is a priori not exactly zero and

the total radiation force differs from the Gor’kov expres-
sion. In fact, as we show in the Supplemental Material
Supplementarymaterial.pdf (SM) (see SM1), the dif-
ference between the zero-mean displacement particle and
the free-to-move particle yields a correction in terms of
forces which is of higher order. Consequently, estimating
the force in a Lagrangian approach over the time sym-
metric trajectory corresponding to a suspended particle
is as good, in terms of order of approximation, as rely-
ing on the Gor’kov formulation. By using an asymptotic
approach detailed below, we are going to derive the ex-
pression for an equivalent instantaneous radiation force
Frad(t), so that at the leading order in the Mach number,
F(t) = Frad(t) + f(t), with f a zero-mean function.

Let us first define the scattered pressure field ps as the
correction of the incident field required to account for the
presence of the particle:

p = pin + ps. (11)

34002-p2
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From eqs. (1) and (2) it is thus always possible to calcu-
late F̄rad as F̄rad(r) = 〈

∫

Sp(t)(pin + ps)dS〉. This was the

Eulerian approach used in the seminal work of Yosioka [6]
in which an expansion equivalent to the one used in op-
tics by Mie for scattering of light by spherical particle was
done to deduce eq. (8).

Here, we instead consider a Lagrangian description of
the particle in movement in the surrounding fluid. For
this purpose, we first make a guess that the motion of the
particle is mainly driven by the effect of pin. As a first
approximation we could be tempted to write F̄rad(t) =
〈
∫

Sp,in(t) pindS〉 where Sp,in(t) is the surface of the par-

ticle altered only by the effect of pin (see SM1 in the
SM for a rigorous definition). However, this approxima-
tion is in general too crude. Indeed, in the limit case
of a fluid particle in fluid, i.e., with f1 = f2 = 0, we
get from eqs. (8) and (10) that F̄rad = 0. This con-
tradicts the elemental fact that, in such a case, for a
standing wave, 〈

∫

Sp,in(t) pindS〉 doesn’t actually vanish

(see SM3 in the SM). Therefore, the expression should
be corrected, the simplest one we have found being of the
form F̄rad ≃ 〈Fa(t)〉 with

Fa(t) = −β(t)

∫

Sp,in(t)

pindS, (12)

where the specific correction β(t) =
̺p−̺f

̺f0

depends on

̺p(t) and ̺f (t), which are the instantaneous particle and
fluid densities in the mere incident field, respectively.
Fa(t) has the peculiar property to cancel at all times for a
neutral particle (i.e., when no radiation force is present).
Remarkably, we will show that eq. (12) allows us to recover
Gor’kov results, i.e., eq. (8).

Using the divergence theorem together with the small
particle assumption, eq. (12) yields at the leading order:

Fa(t) =
(̺p − ̺f )

̺f0
∇pin(rp(t))Vp,in(t). (13)

Then, in order to calculate 〈Fa(t)〉, one must remember
that the particle constantly moves in the field. To simplify
the present calculations, we can define F̃a(r, t), obtained
from the expression of Fa(t) assuming the particle stands
at r instead of rp(t) at time t, thus satisfying

Fa(t) = F̃a(rp(t), t). (14)

Defining the initial time t = 0 by rp(0) = r, we then have

Fa(t) ≃ F̃a(r, t) +
(

rp(t) − rp(0)
)

· ∇F̃a(r, t). (15)

We identify both a local and convective contributions,
respectively denoted F

loc
a (t) and F

conv
a (t), so that

Fa(t) ≃ F
loc
a (t) + F

conv
a (t), (16)

with

F
loc
a (t) = F̃a (r, t) , (17)

and

F
conv
a (t) =

∫ t

0

vp(t
′)dt′ · ∇F̃a (r, t) . (18)

The local force can be expressed, keeping terms up to
order O(ε2+α), as

F
loc
a (t) = −Vp0

[

−

3

2

f2

1 − f2

∇pin + κf0

f1

2
∇p2

in

]

(r, t), (19)

where use of Euler’s equation has been made as detailed
in the SM.

Averaging the above expression over time yields

〈Floc
a (rp(t))〉 = −∇

[

Vp0κf0
f1

2
〈p2

in〉

]

. (20)

It is noteworthy that the term in brackets corresponds
to the first term (monopolar contribution) of the Gor’kov
force potential expressed in eq. (9).

In order to obtain the mean convective term contribu-
tion, we start expressing the first order particle velocity
vp(t) as a function of the incident acoustic velocity field
vin. The particle being accelerated in the incident sound
field of velocity vin(r, t), the surrounding fluid inertia leads
to an added mass effect (see [18]), which first appears at
the order O(ε): At this order, Batchelor [19] shows that
vp can be expressed as

ṙp(t) = vp(t) = (1 − f2)vin(rp(t)). (21)

This equation represents the zero-mean trajectory fol-
lowed by a dense particle in a sound field (at order 1
in Mach). Now, inserting expressions (19) and (21) in
eq. (18), we get

F
conv
a (t) = Vp0

3

2
f2

∫ t

0

vin(r, t′)dt′ · ∇ (∇pin(r, t)) . (22)

After some calculations detailed in SM3 in the SM, in-
volving the linearized Euler equation and an integration
by parts, it follows that

〈Fconv
a (rp(t))〉 = −∇

[

−Vp0
3f2

4
̺f0〈v

2
in〉

]

. (23)

Likewise, the term in brackets is the dipolar contribu-
tion of the Gor’kov potential expressed in eq. (9).

Combining the mean local and convective contributions
given in eqs. (20) and (23), we obtain, at the leading order,

F̄rad ≃ 〈Fa (rp(t))〉. (24)

Fa(t) can thus be identified to the instantaneous radia-
tion force Frad(t) defined in eq. (8) in complete agreement
with Gor’kov’s results. This Lagrangian derivation of the
radiation force constitutes the first main finding of this
letter.

The second important result, that we will now discuss,
concerns the physical interpretation of this radiation force.

34002-p3
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a) b)

Fig. 1: Time sequence of a particle over one period T of a standing wave propagating along the (vertical) x-axis. It illustrates
the radiation force as a gravity-like effect for two representative cases plotted according to eq. (25): (a) a compressible and
neutrally buoyant particle and (b) a dense and iso-compressible particle. The green dashed line is the trajectory the particle
would follow as a fluid particle, and the blue dashed line is the actual one. In case (b) is also added in magenta the trajectory
the particle would have without the added-mass effect. The sphere volume is filled with grey color, its equilibrium shape being
delimited with the black dotted line. As it plays no role in the second case, we chose to represent an incompressible particle.
Below each sequence, both the local relative density shift Δ̺/̺ and the acoustic gravity component gin,x are plotted to aid the
interpretation. See the text for a more detailed step-by-step explanation.

For this purpose we introduce an effective gravitation field
gin = ∇pin

̺f0

and a relative density Δ̺ = ̺p −̺f in eq. (13)

and eq. (24), which leads to

F̄rad = 〈Δ̺Vpgin〉. (25)

The radiation force can thus be understood as the lead-
ing term in the mean force which would result from a grav-
itational field modulation equal to gin(t). In other words,
Fa(t) can be seen as a fluctuating apparent weight, result-
ing from the combination of two oscillating quantities:

– a forcing effect: an incident acoustic gravity-like ac-
celeration field gin(r, t);

– a response effect: owing to their compressibility, both
the particle volume and the fluid densities oscillate
at the forcing frequency, rendered by the relative
density term Δ̺Vp = ∆̺

̺p
mp (mp: constant particle

mass).

By analogy with the buoyancy force (i.e., Archimedes’
law), arising when a particle has a density or compress-
ibility different from the fluid in which it is immersed, the
oscillating force Fa(t) is equivalent to a rapidly fluctu-
ating “acoustic gravitational force”. As we have shown,
the time-average of this force, taking both the temporal
and spatial structure of the field into account, leads to the
classic radiation force expressed by Gor’kov for standing
waves. Our conclusion is also in agreement with Gor’kov’s
work for progressive wave for which the radiation force is
expected to be zero at this order as well.

We will now give a comprehensive picture of the physics
at play in the gravitation-like force, considering a parti-
cle in a plane standing wave pin = −p0 cos (ωt) cos (kx),

with k = 2π/λ and ω = kcf0 the wave number and an-
gular frequency of the wave, respectively. As explained
above, the acoustic gravitational effect results from two
contributions: a local one, associated with the oscillation
of the particle apparent mass mp(1 −

̺f

̺p
) in the acoustic

gravitation field, and a convective one, linked to the local
exploration of the field by the oscillating particle. Let us
now separate both contributions by considering two limit
cases for a particle initially located between a pressure
antinode (at x = 0) and the nearest node in the x > 0
region (see fig. 1).

Case a: a neutrally buoyant but compressible particle.

We first consider a particle both neutrally buoyant (̺p0 =
̺f0) and more compressible than the fluid (κp0 > κf0,
i.e., f1 < 0). In this case, only the local contribution
remains as the convective term vanishes (f2 = 0). Let us
figure out the particle movement over a time period T .
The sinusoidal green dashed line in fig. 1(a) represents the
movement of a fluid particle in the sound wave, which is
also, at leading order, the particle movement since f2 = 0
so that vp = (1−f2)vin = vin (no added mass effect comes
into play in this case).

At time t = 0, the pressure gradient is such that gin

is oriented downward1. The particle is compressed and
hence denser than the hosting fluid at its location, so that
it plunges downwards. At t = T/4, the pressure is zero,
the particle thus follows the non perturbed trajectory (no
radiation force). At t = T/2, the pressure gravity reverses
but the particle also expands, so that it is ‘lighter’ and thus
keeps sinking. At t = 3T/4 it follows the same trajectory
(no force). Overall, the acoustic gravity is always out of

1For the sake of conciseness, we will abusively use the terms up
(towards x > 0) and down (towards x < 0), assuming the classical
paper reading orientation on the Earth.
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phase with the density shift: for the whole period, the
particle keeps “falling” towards the pressure antinode at
x = 0 and the instantaneous radiation force maintains the
same orientation.

Case b: an iso-compressible particle, denser than

the fluid. We now consider a particle iso-compressible
(f1 = 0) but denser than the hosting fluid (f2 > 0), also
located between x = 0 and x = π/k, as shown in fig. 1(b).
To the green fluid particle trajectory is now added the
flattened magenta dashed line, which represents the tra-
jectory the particle would follow if only added-mass effect
would apply. First, the particle dynamic is such that it
plunges between t = 0 and t = T/4 since it is denser
than the fluid in a downward gravity field. However, at
t = T/2, the gravity field reverses so that the particle
rises. Here, the point is that the gravity field (or acoustic
pressure gradient) being larger at the location where the
particle is at T/2 than at t = 0, the radiation force over
the cycle does not balance symmetrically. On average, a
net upward radiation force (toward the nearest node) is
exerted upon the particle.

It is noteworthy that in this case, the effect of the added
mass is to alter (with a factor (1 − f2)) the particle tra-
jectory obtained by integrating vp = (1 − f2)vin. In other
words, the “landscape” explored by the particle deter-
mines the hysteretic values of the gravity field that the
particle will encounter at extremal positions and hence-
forth contributes to its amplitude. In the convective (or
‘landscape’) effect, we note that the radiation force re-
verts within a cycle while it is not the case in the local
one, where it maintains the same orientation.

In conclusion, the time-resolved Lagrangian approach
turns out to be another way to interpret both the time-
averaged scattered contributions (monopolar and dipolar
scattering terms) appearing in the Gor’kov potential of
the averaged radiation force. Equation (25) gives a clear
interpretation (see fig. 1) of the acoustically induced buoy-
ancy effect, from which both terms are derived: i) a local
term, originating from the compressibility ratio, a neu-
trally buoyant particle alternatively sinking and floating
within the time varying acoustic field, and ii) a convective
one, a denser but iso-compressible particle encountering
a stronger instantaneous force as it approaches pressure
nodes where the pressure gradient is the largest. Overall,
it shows that the radiation force has the structure of an
inertial force in an equivalent gravity acceleration field cre-
ated by the acoustic pressure gradients in the fluid. There-
fore, it is possible to consider the acoustic radiation force
as a “centrifugal” force. This idea is indeed reinforced by
the ability of the acoustic radiation force to sort particles
according to their size, density and compressibility ratios
(acoustophoresis [9]), which is reminiscent of centrifugal
forces. Correlatively, our findings may also shed new light
on the ability of the radiation force to universally deform
interfaces [20], or to separate miscible fluids of different
densities, as evidenced by different groups [21–23].

As a perspective, we hope our work will stimulate future
experimental investigations in the direction of ultrafast
tracking of the time resolved particle’s dynamic in a sound
field.

Beyond acoustics, one may wonder how this approach
could be transposed to other types of waves such as
electromagnetic waves, transverse waves on a string or
surface waves (e.g., in hydrodynamic quantum analogs
involving walking droplets bouncing on a vibrating
bath [24]) for which a radiation force also arises. Finally,
our work reveals the emergence of a gravitational field
from a wavy background pushing an object (thus flowing
in a quiescent fluid). For that reason, this result could
have been expected from the point of view of acoustical
analogs of blackholes [25] for which it is known that an
acoustical field superimposed on a flowing fluid yields the
curved space-time metric of the general relativity [26].
Hence, and more prospectively, the similarity of both
issues suggests for the future to address the problem of
acoustical analogs with a point of view centered around
the radiation force phenomenon.
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